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One of the possible mechanisms of forming offshore sandbars parallel to a coast is 
the wave-induced mass transport in the boundary layer near the sea bottom. For this 
mechanism to be effective, sufficient reflection must be present so that the waves are 
partially standing. The main part of this paper is to explain a theory that strong 
reflection can be induced by the sandbars themselves, once the so-called Bragg 
resonance condition is met. For constant mean depth and simple harmonic waves this 
resonance has been studied by Davies (1982), whose theory, is however, limited to 
weak reflection and fails at resonance. Comparison of the strong reflection theory with 
Heathershaw’s (1982) experiments is made. Furthermore, if the incident waves are 
slightly detuned or slowly modulated in time, the scattering process is found to 
depend critically on whether the modulational frequency lies above or below a 
threshold frequency. The effects of mean beach slope are also studied. In addition, 
it is found for periodically modulated wave groups that nonlinear effects can radiate 
long waves over the bars far beyond the reach of the short waves themselves. Finally 
it is argued that the breakpoint bar of ordinary size formed by plunging breakers 
can provide enough reflection to initiate the first few bars, thereby setting the stage 
for resonant reflection for more bars. 

1. Introduction 
On natural beaches nearly periodic longshore sandbars can be found in bays or on 

open coasts. In  a recent thesis on this topic, Dolan (1983) cites, for example, 
observations by Kindle (1936) and Dolan (1983) in Chesapeake Bay, Evans (1940) 
and Saylor & Hands (1970) in Lake Michigan, Lau & Travis (1973) in Escambia Bay, 
Florida, Sheppard (1950) on the Southern California coast and Short (1975) in the 
Alaskan Arctic. According to these references, multiple bars are usually located on 
very mild beaches (slope < 0.005) on which plunging breakers are common. The 
number of bars can range from 3 to 17 (Chesapeake Bay). While the bar spacings 
vary widely (from 12 m in bays to 480 m on an open coast), they generally increase 
offshore with increasing depth. Because of the complexity of local variability of waves 
and currents and their interaction with sedimentary structures, it is unlikely that 
any single mechanism prevails at all these sites where definitive wave records are yet 
lacking ( D o h  1983). Perhaps the only established aspect of the whole process is the 
generation of the first bar on an initially barless beach. According to Evans (1940), 
it is the falling crest of the plunging breaker that stirs up sand particles and deposits 
them behind. Thus the first bar usually appears at the breaker line, and is therefore 
called the breakpoint bar, which is immediately followed by a trough on the 
shoreward side; this has been confirmed in the laboratory by Keulegan (1948). 

The particular mechanism of mass transport in a wave-induced boundary layer 

11 YLI  152 



316 C. C. Mei 

near the sea bottom has been known to be relevant to the movement of sediments. 
In particular, if there is a standing wave over an initially horizontal bottom, the 
Lagrangian drift near the bottom of the boundary layer converges toward the nodes 
and diverges from the antinodes, while the reverse is true near the top of the boundary 
layer. As a consequence, heavy particles rolling on the seabed tend to drift towards 
the nodes and light particles in suspension towards the antinodes. Therefore sandbars 
near a seawall have wavelength one-half of the dominant incident waves; this feature 
has been observed in the laboratory for some time (Bagnold 1948; Herbich, Murphy 
& Van Weele 1965; Carter, Liu & Mei 1973; Nielsen 1979) all for bottom of zero mean 
slope. For partially standing waves, Carter et al. have found from the theory of mass 
transport in a laminar boundary layer (Longuet-Higgins 1953) that the reflection 
coefficient must exceed the critical value of 0.414 for the Lagrangian drift to converge 
somewhere between the nodes and their adjacent antinodes. Under weaker reflection 
the mass transport and the mean particle drift are essentially unidirectional along 
the incident wave. Carter et al. have also confirmed these predictions by observing 
sparsely populated heavy particles on the smooth bottom of a wave tank. Since 
eddy-viscosity models for the bottom boundary layers do not alter the results of mass 
transport qualitatively for either progressive (Longuet-Higgins 1958) or standing 
(Johns 1970) waves, one may expect the same for the mass transport in the turbulent 
boundary layer beneath partially reflected waves and the associated effects on the 
initiation of sandbars ; the threshold reflection coefficient may, of course, deviate 
somewhat from the laminar value 0.414. However, on natural beaches of mild slope, 
short waves are supposed to lose most of their energy by breaking, hence reflection 
at the shore is usually thought to be small. What, then, is the origin of reflection 
needed for the mass-transport mechanism '1 Carter et al. have earlier speculated 
without quantitative argument that the breakpoint bar caused by a plunging breaker 
can supply sufficient reflection. A complementary theory has been recently put forth 
by Davies (1982) that reflected waves can be resonated by equally spaced bars if the 
bar wavelength is one-half that of the incident waves. 

This kind of resonant reflection is known as Bragg reflection in crystallography, and 
its possibility in water waves can be easily seen from the boundary condition on the 

and &(z) denote the bar height above the mean. For small bar amplitudes we have 
I bottom. Let h denote the mean depth, which is assumed by Davies to be a constant, 

where 6 is the wave potential. If the incident wave has the potential 

+ *  -- igA cash k(z + h) eikz-iwt 

2w coshkh 

and the bottom is sinusoidal with half the wavelength, 

then the boundary condition (1.1 ) becomes approximately 

_ -  36 gkA ( - e-ikz-iwt + 3 e3ikz-iwt )+*  ( z= - -h ) .  
az - ikD4w cosh kh 

The first term in (1.4) will clearly resonate the reflected wave on the free surface. In  
fact this is a special case of three-wave resonance due to quadratic interaction. If the 
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three waves are described by a, exp i(k, x -u, t )  the conditions for resonance are 

ulfo,fu3 = 0, k,+k,+k, = 0. (1.5a, b )  

Here we have simply w, = w2 = w ,  w,  = 0 and k,  = - k, = k, = ke,. 
Experiments demonstrating this resonant reflection over sandbars have been 

reported by Heathershaw (1982). An implication of this finding is that, when there 
is a large patch of periodic sandbars, seaward reflection can be strong, which in turn 
causes new sand accumulation at half-wavelength intervals on the seaward side of 
the patch. The extended patch further enhances reflection and initiates more 
sandbars, until the depth becomes too great for waves to be felt at the bottom. This 
tendency of sediment transport has also been observed by Heathershaw by sprinkling 
sand on two sides of a fixed bar patch. 

Being based on the technique of regular perturbations, Davies’ theory is nevertheless 
valid only for infinitesimal reflection and away from resonance. Specifically, his 
reflection coefficient, defined as the ratio of the reflected wave amplitude to the 
incident wave amplitude, is given by 

2kD 2k I sin (2kl l )  mn: I 
sinh 2kh + 2kh 7 (2k/Z), - 1 ’ R =  

where m is the number of sandbars and 1 their wavenumber. When 2kll - t  1 ,  and m 
becomes large, the reflection coefficient becomes unbounded, 

2kD mn: 

sinh 2kh + 2kh 2 ’ R-t (1.7) 

and this theory breaks down. 
In this paper we shall give a, theory appropriate for large reflection. Governing 

equations uniformly valid in space and time will be found which couple the incident 
and reflected wave envelopes through the bar amplitudes. Results for perfectly tuned 
waves on a bottom of zero mean slope will be compared to the experiments of 
Heathershaw. Effects of detuning will then be treated, also for zero mean slope ; the 
results can be easily applied to periodically modulated wave groups. The existence 
of a cut-off frequency is pointed out. A simple case of parallel bars on a mildly sloping 
beach will be detailed. Finally nonlinear effects of bars on the second-order long waves 
caused by detuned or periodically modulated short waves will be discussed. 

Prior to Davies, there exist papers on long waves over periodic topography in 
shallow water (McGoldrick 1968; Rhines & Bretherton 1973 for a rotating ocean). 
By regular perturbations these authors deduced the Mathieu equation, and only 
indicated that resonant reflection corresponded to a subharmonic instability. They 
did not give a uniformly valid theory at resonance. Motivated by the work of Davies 
(1982), Mitra & Greenberg (1984) have considered an infinite patch of periodic 
sandbars on a constant mean depth and studied the slow evolution of reflected waves 
with respect to time but not to space. Their theory can therefore not be compared 
with the finite-patch experiment of Heathershaw. On the other hand, in X-ray 
diffraction by crystals the linear theory is very well developed (see e.g. Pinsker 1978). 
It turns out that the equations governing time-invariant two-dimensional diffraction 
of X-rays in a deformed crystal resemble, but are not the same as, those for water 
waves over sandbars on a mildly sloping beach. Problems of physical interest in X-ray 
diffraction are, however, not altogether similar to those in water waves. This is 
particularly so in regard to nonlinear effects, which appear to be less studied in the 
former field. 
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2. Approximate equations for wave envelopes 
We shall first derive the asymptotic equations applicable for spatially periodic 

sandbars on an otherwise mildly sloping bottom. The waves are assumed to be small 
in amplitude so that nonlinearity (especially breaking) is unimportant. The incident 
waves are allowed to be slowly modulated in time and space. The slopes of the free 
surface, the mean bottom, the sandbars and the ratio of wavelength to group length 
are all assumed to be characterized by the same small parameter E. To the accuracy 
needed, it can be shown that nonlinearity on the free surface does not affect the 
leading-order results, and it suffices to begin with the governing equations, which are 
linearized with respect to both the mean free surface and the mean sea bottom. The 
velocity potential must satisfy 

V2q5+$hZZ = 0 ( - h  < z < 0) (2.1 1 
in the fluid, where h ( z ,  y) is the mean depth and 

is the horizontal gradient operator. The linearized kinematic and dynamic conditions 
on the free surface can be combined to give 

q A + q 5 t t  = 0 (2 = 0). (2.3) 

$hZ = -Vh.vq5+EV'(mq5)+0(€2) (z = - I & ) .  (2.4) 

On the sea bottom, vanishing of the normal velocity leads to 

We introduce the slow variables 5 = EX, jj = ey and i= st, and the multiple-scale 
expansions 

(2.5) 

where q5(l) = q5(')(z, y, z, t ,  Z, jj, i) etc. The perturbation equations at O(E)  are 

q5 = Eq5(') + €2q5(2) + O ( E S ) ,  

(2.10) 

where (2.12) 

Employing the idea of ray approximation (see e.g. Mei 1983), we take the first-order 
potential $(') to be 

(2.13) = @+e's++ * +@-eiS-+ *. 
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Here the superscripts + and - refer respectively to incident and reflected waves, 
$+ and $- are the corresponding vertical profiles: 

A*. 
ig coshk(z+h) 

'* =-G coshkh 
(2.14) 

A+ and A- are the complex wave amplitudes, and S+ and S- are the phases. 

parallel to the y-axis, i.e. h = h(Z); thus 
From here on we only consider the case where the mean bottom contours are 

S* = f a(Z)dx+/?y-ut. r 
The wavenumber vectors are 

k* = (&a,/?),  

(2.15) 

(2.16) 

with a = k cos 8, p = k sin 8 = constant, (2.17) 

where 8 is the local inclination of the incident wave with respect to the x-axis. The 
magnitude k of both k+ and k- satisfies the familiar dispersion relation 

02 = gk tanh kh (2.18) 

at leading order. Note that the reflected waves are permitted to be of the same order 
as the incident wave, in anticipation of resonance. 

Substituting (2.13) into (2.9)-(2.11), we get 

V2$(2) + $ii) = - i[k+ v@+ + v. (k + @+ )] eiS+ + * 
- i [k- .V@-+~.(k-$-)]eis-+ * ( - h  < z < 0) (2.19) 

and (2.20) 

We assume the sandbars to be parallel to the y-axis and spaced at one-half of the 
local wavelength : - 

6 = tD[exp(2iJadx)+exp( -2iSadx)l. (2.21) 

where the real amplitude D(Z, g) can vary slowly in both horizontal directions. It then 
follows from (2.11 ) that 

$i2) = -ivh. (k+$+ eiS++k-$- eiS- )+ *+:D(aZ-p) ($-cis++@+ eiS- 1 
+*  +... (Z=-h). (2.22) 

Only the terms with the phases S+ and S- are kept, as other terms do not force 
resonance (cf. (1.4)). If the potential $@) is expressed as 

#z)=iy+e'S++ *+iy-e-iS-+ *+... (2.23) 

the conditions for y+ are 

y&-k2y+ =k+*V$++V*(k+$+)  ( - h < z < O ) ,  (2.24) 

(2.25) 

y,' = Vh*(k+$+)+~iD(a2-p)$/-  ( z  = -h). (2.26) 

$- satisfies a similar set of equations if the superscripts + and - are interchanged. 
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Note that $* are the homogeneous solutions of (2.24)-(2.26). Multiplying (2.24) 
by ($+)* and the conjugate equation by $+, and then integrating the difference, we 
get a solvability condition for y+ , which can be reduced to 

A+2 a A+2 i v-  c; 2+--- = --52 (A+)* A- cos2e+ *. 
at 2 2 ,  

(2.27) 

By an analogous argument we also get 

where 

are the group velocities and 

o k D  52, = gk2D - 
40 cosh2 kh - 2 sinh 2kh * 

(2.29) 

(2.30) 

Note that a, has the dimension of frequency; it increases with k D ,  but decreases with 
kh. Equations (2.27) and (2.28) are modifications of the well-known laws of wave- 
action conservation. Clearly 

a t (I A+ l2 + I A- 1 2 )  + V ( C i  I A+ l2 + Ci 1 A- 12)  = 0. (2.31) 

Thus sandbars can transfer energy between incident and reflected waves. Alternatively 
we can repeat the above procedure by replacing ($*)* with $* and obtain 

= - i 52, A+A- cos 28. 
( ~ * ) 2  a ( ~ * ) 2  v -  CB' - +-. - 

2 at 2 

They can also be written as 

- + C i  VA+ + (V * Cg' ) - A+ = - i52, COB 28 A- 
aA+ 
a t  2 

and 

(2.32) 

(2.33) 

(2.34) 

It is eviden- that the coupling of A+ and A- is stronger if the bars are hig..er andlor 
if the angle of incidence is further away from 45'. Since all subsequent discussions 
will be for the long-scale variations only, there is no need to distinguish Z, ij, ffrom 
5, y, t ;  all overbars will be omitted from here on. Also for brevity we shall make the 
following change of notation : 

A+ = A ,  A- = B. (2.35) 

Thus (2.33) and (2 .34)  become 

aA aA aA aC A 
- + C  -+C -+A- = -iQ, cos28B,  
at g1 ax g~ ay ax 2 

aB aB aC B 
-+C --A- = -iQ0 cos28A, 

aB -- 
at g l a x  goaY ax 2 

(2.36) 

(2.37) 
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where 

= C, (cos 0, sin 0) .  (2.38) 

Also, in the time-invariant limit (a/at = 0), (2.36) and (2.37) resemble, but are not 
identical to, those in X-ray diffraction by deformed crystals, first given by Tagaki 
(1969; for other relevant topics see also Pinsker 1978). 

For the special case of constant mean depth (h = const), (2.36) and (2.37) can be 
combined to give 

If we restrict further to normal incidence 

(2.39) reduces to 

(2.39) 

(2.40) 

(2.41) 

which is the Klein-Gordon equation well known in quantum mechanics and in the 
vibration of elastically supported strings. It is easy to see from (2.39) that the 
envelopes behave as dispersive waves. In  contrast, we recall that in water of constant 
or infinite depth, dispersive effects in the envelope are important only for much longer 
distances ( O ( E - ~ ~ ) )  or time (O(E-%)).  It is worth noting that the evolution equations 
for three-wave resonance in a homogeneous medium due to quadratic interaction 
reduces to (2.36) and (2.37) with constant C,, when one of the three waves is assumed 
to have constant amplitude. This assumption is called the pump-wave approximation 
in plasma physics (see e.g. Craik & Adam 1978). 

If we further restrict to bars uniformly distributed over the entire horizontal plane, 
all spatial derivatives in these equations vanish; the results of Mitra & Greenberg 
((37) and (38)) follow readily. 

3. Normal incidence of a detuned wavetrain over a bar patch 
Consider the normal incidence of a periodic wavetrain arriving from x - - co. 

Periodic bars of constant amplitude D and wavenumber 2k are present in the range 
0 < x < L. The mean depth h is constant. Let the incident wave be slightly detuned 
from Bragg resonance so that its wavenumber is k+sK,  where K is of order unity. 
The detuning implies a frequency deviation by the amount EQ, where 

Q = C,K.  (3.1) 

The incident-wave potential is given by (2.13) and (2.14) with the + superscript 
and the amplitude 

(x < O ) ,  (3.2) 

where z and t are slow coordinates. The differential equations for x < 0 and x > L 
are 

A+ = A = A eiWZ-nt) 

(;+cg;)a = 0 (x < 0 ,  z > L ) ,  (3.3) 

(3.4a) (;-c,& = 0 (z < 0). 
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We impose the condition that there be no reflected waves on the side x > L :  

B = O  ( x >  L ) .  (3.4b) 

Over the bars 0 < x < L we have 

Continuity of A and B at x = 0 and L gives four conditions. The solution in all three 
regions can be readily found.7 Four cases may be distinguished with respect to the 
cutoff frequency s2,. 

Case (i) : s2 > 52, 
Here the detuning frequency is above cutoff. Over the bars, 0 < x < L, the envelope 
wavenumber P is given by 

PC, = (522-52:):, (3.7) 

and the two envelopes vary according to 

A = A, T(x)  e-iPt, 

where 
PC, cos P( L - x )  - is2 sin P( L - x) 

PC, cos PL - is2 sin PL 
T(x)  = 

( 3 . 8 ~ )  

(3.8b) 

and B = A, R(x) e-int, (3 .94 

with 
- a, sin P(L - z) 

PC, cos PL - i52 sin PL ' 
R(x)  = (3.9b) 

On the incidence side, x < 0, 

> (3.10) A = A eiKz-iQt B = A, ~ ( 0 )  e-iKz-iQt. 
0 

We define the reflection coefficient to be 

- is2, sin PL 
PC, cos PL - is2 sin PL 

R(0) = 

On the transmission side, x > L, 

A = A ,  T ( L )  eiKz-iQt , B = O .  

The transmission coefficient is defined to be 

PC, 
T ( L )  = 

PC, cos PL - is2 sin PL ' 

The reflected wave intensity over the bars is 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

t Craik & Adam (1978) have given mathematical solutions similar to ours in the context of 
pump-wave approximation of three-wave resonance. 
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Its value at x = 0 can be written in a form which also appears in the Bragg reflection 
of X-rays by a crystal of finite thickness (Pinsker 1978, p. 255): 

I R(0) 12 = { (y + [ (E-J - 1 1  cot2_ Q L  Q - l]t)-’ 
QO c, 

(3.15) 

Case (ii): 0 < Q < Qo 

The detuning frequency is below cutoff; the envelope varies exponentially in z for 
0 < x < L. Denoting 

Q = iP, where QC, = (QE-Q2)t, (3.16) 

we get from (3.7) 

(3.17) 
iQC,coshQ(L-x)+Q sinhQ(L-x) 

iQC, cosh QL + Q sinh QL ’ T(x)  = ~ 

52, sinhQ(L-x) 
iQC, cosh QL +Q sinh QL 

R(x) = (3.18) 

for 0 < 2 < L. Envelopes outside the bar region are given by (3.10) and (3.12), with 
R(0) and T(L) evaluated from (3.17) and (3.18). 

The reflected-wave intensity over the bars is 

sinh2 (c[ QO L 1 -(E-J( 1 -:)} 
B 

QO L 
I R ( 4  l2 = 

cosh2 {c,[ 1 -(:TI} -(:- ’ 

(3.19) 

Case (iii): D = 0 (perfect tuning) 

The special limit of 51 = 0 corresponds to perfect tuning. Now Q in (3.16) reduces 
to K while 

Q 
c o s h ~ ( L - ~ )  

(0 < x < L), (3.20) 
C, - T(2) = 

A _ -  
DO L 
c, 

B C, 

A0 

cash - A0 

- i  sinh-(L-2) DO 

(0 < 2 < L) .  (3.21) 
QO L 
cg 

- = R(x) = 
cash - 

The dimensionless parameter Qo L/C, may be written 

k2DL 
2kh + sinh 2kh ’ 

0- - Q L  

C, 
(3.22) 

which increases with the bar slope kD or the width of the bar patch, but decreases 
with increasing water depth. In  very shallow water it reduces to 

QoL k L D  
C, 4 h 

-+-- (kH + 1). (3.23) 

As the width L of the bar patch increases, R(O)+-i and T+O; there is complete 
reflection. 
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A A A A A A A A ~  
0.4 - 

IR (41 

0.1 - 

0 4 8 12 16 x(m) -12 - 8  - 4  -- 
Bars 

FIGURE 1. Comparison between theory (equation (3.9)) and experiments by Heathershaw (1982). 
b = bar amplitude; x = distance in metres along the direction of incident waves. The periodic bars 
are from z = 0 to z = 10m. 

i 

0.5 

0 0.5 1 

x / L  

FIGURE 2. Reflection intensity over the sandbars. Normal incidence. Numbers by the curves 
give Sa, LIC,. - , Sa/Q0 = 0.5; ----, Sa/SZ, = 1.5. 

The results of this special case may now be compared with the experiments by 
Heathershaw (1982), who installed on the bottom of a long tank 10 sinusoidal bars 
of amplitude D = 5 cm and wavelength 100 cm. Free-surface amplitudes were 
measured for several water depths, but for the same incident wavelength 
(2x/k = 200 cm). In  figure 1 the measured amplitudes of the reflected waves for the 
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region - 10 m < x < 17 m are reproduced and compared with (3.8). The agree- 
ment is seen to be very good. Outside the patch our theory gives constant values that 
are less than the observed data. On the transmission side the small discrepancy is 
probably due to reflection from the beach. On the reflection side the discrepancy is 
greater for the shallower water and stronger reflection, suggesting that nonlinearity 
or reflection from the wavemaker may be significant. 

For this special case of 52 = 0 it is straightforward to add the second-order 
correction associated with #2); the result is 

where 
kD sinh 2kh 

sinh 2kh + 2kh ’ 
M = - tanh kh 

2 
(3.25) 

Since the correction is 
of the reflection coefficient is O(e2) and is quite negligible. 

out of phase with the 0(1) term, its effect on the magnitude 

Caee (iv):  52 = 52, 
At the cutoff frequency we take &-to in (3.17) and (3.18) to get 

1 -iB,(L-x)/C, 
T(x) = 

l-iQ,L/Cg ’ 

- isd,(L - x)/Cg 
1 - i52, L/Cg 

R(x) = 

(3.26) 

(3.27) 

for 0 < x < L. Note that in this case T(L) + R(0) = 1. 
We now present theoretical results for detuned waves 52 9 0. 
In  figure 2 the variation of the reflected-wave intensity over the sandbars is shown 

for 51/52, = 0.5 and 1.5 and for different widths of the bar patch. Below cutoff the 
variation is monotonic; above cutoff oscillatory. The case 52/52, = 1 is simple and 
is not plotted. 

In figure 3 the reflected-wave intensity at x = 0 is plotted aa a function of 52, L/Cg 
for several values of 52/52,. Figure 4 shows I R(0) I2 as a function of sd/52, for several 
52, L/Cg. Below cutoff I R(0) I2 rises to unity rapidly and monotonically as 52, L/Cg 
increases, implying nearly complete reflection. Above cutoff I R(0) l2 is oscillatory and 
attenuating in 52, L/Cg. Perfect transmission (zero reflection) occurs at the zeros of 

i.e. 

(3.28) 

(3.29) 

The limiting C ~ A W  of a semi-infhite bar patch (L+ 00) can be solved directly. The 
results are as follows. 

For a/a, > 1 

{ t} = A, { i} eiPz--int (0 < x < oo), (3.30) 

(3.31) where 
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1 .o 

1 

0 

FIGURE 3. 

5 10 

Do LIC, 

Reflection intensity at z = 0 and for x < 0. Normal incidence. 

0 0.5 1 .o 1.5 2.0 

FIGURE 4. Reflection intensity at x = 0 and for x < 0. Normal incidence. 
QlQ, 

Note that B propagates from left to right, opposite to the short waves enveloped by 
it. The propagation speed of A and B is 

C, 52( 522 - a,):, (3.32) 

which is always higher than C, and approaches C, as Q/Q, + 00. 

For 0 < a/a, < 1 

where 

(3.33) 

(3.34) 
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whose magnitude is unity, implying complete reflection. Thus short waves are 
trapped near the incidence edge of the bar field, with the penetration distance 

(3.35) 

which is greater than the group length K-’ in the incidence zone. 
Note that (3.34) is the limit of (3.18) for L+ GO. However, (3.31) is not the limit 

of (3.9b). Mathematically, since any time-harmonic response is really the quasi- 
steady-state limit of an initial-value problem, the discrepancy merely indicates that 
the two limiting processes of L+ m and t +. GO cannot be interchanged. Physically, 
when Q/Q, < 1, A and B are wavelike. Setting L+ GO at the outset (i.e. (3.31)) means 
that we seek the steady state without ever allowing reflection from x = L; therefore 
it corresponds to lim,+m limL+m. On the other hand, the a, L/Cg+ m limit of (3.9b) 
corresponds to limL+m lim, + ~ ,  which allows steady reflection from x = L. 

So far all our results are for one train of detuned waves. An incident sea with a 
narrow-banded spectrum can be modelled crudely by two trains of detuned waves: 

, (3.36) 

where A, and a, can in general be different. Because of linearity, the responses to 
A, and A, can be separately treated. Let and B denote respectively the envelopes 
of right-going and left-going waves over the bars 0 < x < L. If we write 

A = A, eiKz-if2t + A  e-iKX+if2t 
0 

(3.37) 

it is easily seen from (3.5) and (3.6) that T* and R* are the complex conjugates of 
T and R, given respectively by (3.8b) and (3.9b). Therefore results for periodically 
modulated wave groups can be easily inferred and need not be discussed here. More 
realistic modelling of sea waves by accounting for randomness may reveal new 
features, however, and is worth while. 

4. Oblique incidence of slightly detuned waves 

and envelopes of the type 
Consider first a sandbar field of infinite extent in a sea of constant mean depth, 

Note first that the envelope wavenumber vector (p, q )  need not in general be parallel 
to that of the short waves (a, B). The dispersion relation is 

(a-C,q sinO)z-(Cgp C O S O ) ~  = cos228. (4.2) 

For fixed A2 and 8 the above relation is represented by two branches of a hyper- 
bola in the (p,q)-plane as shown in figure 5. Each branch becomes narrower for 
smaller 8. For a fixed q satisfying the criterion 

q-- >-- I c, a sine I Qocos2e c, sme (4.3) 

two real values ofp ( +p, -p), and hence two propagating envelopes, exist. Otherwise 
p is imaginary; the corresponding A and B are exponential (evanescent) in the 
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t' 

FIGURE 5. Dispersion relation for oblique waves on periodic bars. 

z-direction. If, instead, p is real and given, there are two possibly values of q, 
corresponding to two different directions and wavenumbers. In the same direction 
two wavenumbers are also possible. 

Consider now a bar field occupying the region 0 < z < 03. A sinusoidal envelope 

A = A,expi[K(z cosB+y sinO)-St] (z < 0) (4.4) 

arrives from x+ - 00 along the same direction as the waves in the envelope. The 
reflected envelope must be 

B=B0expi[K(-zcosB+ysin~)-L2t] ( z < O )  (4.5) 

to the left of the bars. Over the bars the transmitted and reflected envelopes are 

From (4.2) we get 

where use has been made of (3.1). The cutoff frequency is now at 

cos 2e 
%a 

above which A and B propagate to the right and below which both are evanescent. 
The directional dependence cos 28/cos2 0 varies from 1 to - 03 as 8 increases from 
0 to +c (see figure 6). From (2.37) the reflected envelope has the following magnitude: 

C O S ~  e { 51 [ (g)2 - (,,, 28)27} 
R=%=- A, cos2e _ _  Q, cos2e a (4.9) 

Its dependences on Q/Q0 and 8 are shown in figure 6. Note that when 8 = 
should be no coupling between A and B. Indeed B,/A, approaches zero as 

there 

B, cos2e sz, 
A, 2 cos2e sz * 

+-- - (4.10) 
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0 1 2 

QlQo 
FIQURE 6. Reflection coefficient R(0) at x = 0 and for x < 0 are shown by -: numbers by the 
curves are the values of 20/x where 6 = angle of incidence; abscissa at top of figure. cos 20/c0sa 0 
aa a function of 29/n is shown by ----: abscissa at bottom of figure. 

For 0 x (glancing incidence) the cutoff frequency is high and reflection is nearly 
complete. 

As in the case of normal incidence, the effect of periodically modulated wave groups 
can be obtained by adding another train of detuned waves, and is not pursued here. 

5. Sandbars on a sloping beach 
We now examine the case where the mean depth h vanes slowly with x .  To enable 

analytical results, only normal incidence 0 = 0 and perfectly tuned waves will be 
treated. Now the incident- and reflected-wave amplitudes A ( x )  and B ( x )  only vary 
slowly in x .  We have from (2.36) and (2.37) that 

where 0, and Cg are functions of x .  Let 

K=ACJ,, B=BCJ,. 
Equations (5.1 a, b)  then become 

- -iss,B - iQ,K A‘=- , B’=- 
cg cg ’ 

which can be combined to give 

(5.lb) 

(5.2a, b )  

(5.3a, b)  
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Let the sandbars be confined to the region - L < x < 0 and let the shoreline lie along 
x = Lo to the right of the bars. From the usual theory of refraction K at x = - L is 
easily calculated from x( - a), and can be regarded as an input; this implies the 
boundary condition 

Assume that all waves transmitted past the bars destroy themselves by breaking at  
the shoreline ; we then have 

For any given h(x) and D(x) one can find k(x) for each w through the dispersion 
relation and then solve (5.3)-(5.5) numerically for any frequency. We shall however 
prescribe Cg/Q0 as a simple function of x to achieve analytical results. From (2.29) 
and (2.30) i t  can be shown that C,/B, is monotonic in kh with the following limits: 

B’ = m o ~ / c g  (x = -L). (5.5) 

B=O, x = o .  (5.6) 

A+- 4(gh)th+0 as kh+O, 
0, wD 

C 
A + ? e a l c h a  a s k h + a .  
0, w4D 

We assume a variation that is also monotonic:t 

%=(S) L,-2 ( - L < x < Lo). 
0, 0, _LLO+L 

(5.7) 

(5.9) 

In  principle one can find the corresponding h(z) for a given w and D(z). Note, however, 
that a different w gives rise to a different depth profile. Introducing the normalized 
quan ti ties 

(5.10) x = -  l = 2  X L 
L ’  L ’  

we may rewrite (5.4) as 

52 L ( 1 + 1 ) 2  - 
[(Z-X)B’]’ = (*) ~ B ( - l < X < O ) ,  

-L z-x 
with the boundary conditions 

(5.11) 

(5.12) 

B=O ( X = O ) ,  (5.13) 

where B’ = dB/dX. Equation (5.11) is equidimensional and can be easily solved: 

where 

The reflection coefficient can be defined as 

(5.14) 

(5.15) 

(5.16) 

t D( - L) + 0 is assumed, otherwise a slight modification in the normalization is required. 
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FIGURE 7. Reflection coefficient R( -L)  of a sandbar patch on a sloping beach. 
For - (----) refer to top (bottom) of figure for abscissa. 

For a fixed (Q,L/C,)-, the limit of I @ 1 corresponds to a horizontal bottom. Using 
the fact that 

= e =  2.71828, (5.17) 

we get limR=-itanh-, Qo L 
l + m  cg 

(5.18) 

which agrees with (3.21) at x = 0. When (52,L/Cg)-, is fixed but Z+O (short beach), 
R approaches unity and the reflection is total. Figure 7 shows the dependence of R 
on (52,L/Cg)-, and 1. 

6. Mean sea level due to a detuned or a periodically modulated wavetrain 
Through nonlinear convective inertia, surface waves give rise to radiation stresses 

in the mean, which in turn induce a mean sea level 5 varying slowly in time and space. 
For infinitesimal waves 5 is second order in wave slope. We limit our attention to 
normal incidence, constant mean depth, and long scales in both x and t .  The equation 
governing is then 

after averages are taken with respect to depth and to x and t on the wave period of 



332 C. C. Mei 

the primary wave. When there are right- and left-going waves, i t  is easy to compute 
the pertinent radiation stress 

(6.2) 
27 = , y ( I A I 2 + I B 1 2 ) ,  PS 2c 

where C = w / k .  
We only consider a semi-infinite bar field, L+ 00. 

First let there be a train of slightly detuned incident waves. If Q/Q, > 1 we get 
from (3.31) 

which is constant in x and t .  There the mean sea level is a constant setdown for both 
x 2 0 :  

2h C 

The curly bracket above decreases from 2 to 1 as Q/Q, increases from 1 to A. If 
Q/Q, < 1 we get similarly 

(6.5a), (6.5b) 

where Q is given by (3.16). Use has been made of the fact that B,/A, = R has unit 
magnitude (see (3.34)). Thus the mean sea level penetrates only half as far as the 
shorter waves. 

Next let the incident-wave envelope be periodically modulated, 

A = A, eiKx-iRt + * (A, real). (6.6) 

IA12+IB12 = 2(1A012+IBo12)+A;e2i(Kx-nt)+B;e-2i(Kx+nt)+*. (6.7) 

(6.8) 

On the incidence side we have 

Consider first Q/sZ, < 1. We have over the bars 

I A l2 + I B l 2  = 2(1 A,  l2 + I B, 1 2 )  + (A; + I?;) e-2Qx eVint + *. 

c = co + (c2 e-Zint + *). 
Clearly f consists of two parts: 

(6.9) 

The zeroth harmonic 5, is just twice the mean setdown given by (6.5a, b). The second 
harmonic 5, now represents long waves. Let us define 

c 2  = 5, + em (6.10) 

where 5, is the particular solution to (6.1) in response to the second-harmonic forcing 
in (6.7) and (6.8), while fH is the homogeneous solution to (6.1). It is straightforward 
to show that 

and 

(6.11) 

(6.12) 
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The homogeneous solution owes its existence to the edge (x = 0) of the bar field, as cp alone cannot satisfy continuity requirements at x = 0. It may be written 

(6.13) 

which propagates at the long-wave velocity (gh): outwards to x+ & 00. The constant 
amplitudes N+ and N- can be determined by requiring the continuity of cH + tp and 
its x-derivative at x = 0. The result is 

(6.14) 
Making use of (3.16) and (3.33), we find 

where v is the phase of the complex reflection coefficient 

In  the limit kh+0 we have 
2 

klN*l= (&) . 

(6.16) 

(6.17) 

In  general the equal amplitude of N ,  and N- depends on kh and D/Qo and can be 
easily computed if desired. The important point here is that while the shorter surface 
waves are completely reflected to the left of the bars and only penetrate to a limited 
distance into the bar field, these long waves, which are distinct from the setup or 
setdown waves propagating at the group velocity of the short waves, are radiated 
and propagated at the fastest speed (gh)fi across the bar field without attenuation.? 
Thus along the shoreline protected by a large number of longshore bars, infrasravity 
waves can be more dominant than the short waves. This dramatic filtering effect 
deserves experimental study. 

Similar analysis can be carried out for the case Q/Bo > 1. Now there is only the 
particular solution 

where P is defined by (4.7). On the left of the bar field, long waves are locked to the 
incident and reflected envelopes. Over the bars, long waves propagate at the speed 
which is always higher than C,, aa given by (3.32). 

t Similar radiation of these long waves was also discussed for slowly varying sea depth by Mei 
& Benmouesa (1984). 
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7. Concluding remarks on sandbar initiation 
The results in $53 (case iii) and 5 now provide a theoretically consistent prediction 

of significant reflection which can initiate new offshore sandbars through mass 
transport, once there are already enough bars on the beach. We must now turn to 
the remaining question: what can be responsible for these old sandbars in the fist 
place ? One possibility is that the beach slope at the shoreline is much steeper than 
that offshore. A second possibility seems to lie with the breakpoint bar, which owes 
its existence to the plunging breakers. For a crude but quantitative estimate we apply 
the linearized shallow-water theory to a model bottom, which consists of a rectangular 
bar of depth h,, followed immediately on its right by a rectangular trough of depth 
h,. The depth elsewhere is ho with h, < ho < h,, while the widths of the bar and of 
the trough are both equal to a. For a normally incident wave from x - - 00 the 
reflection coefficient is found, after some algebra, to  be 

R = (1-4/4)4, (7.1) 

where 

with 

A =  (2cosk,acosk2a)2+ 

(7.2) 

T sink,acosk,a+ 

-p+$) sin2k,a sin2k2a, 
h, h2 

(7.3) 

Note that on the side x > 0 no left-going waves (reflection from the beach) are 
allowed. 

Take for examplew = 2x/T = 1 s-l, ho = 1 m, h, = 0.5 m, h, = 1.5 manda  = 1 m; 
we find R = 0.43, which is sufficiently great for the convergence of mass transport, 
as mentioned in $ 1. Needless to say this estimate suffers from the shortcomings of 
both linearization and idealized topography. I ts  order of magnitude, however, is 
probably correct. Thus a breakpoint bar can provide sufficient reflection to start the 
first few bars; the mechanism of resonant reflection described in this paper then 
reinforces the tendency and induces still more bars offshore. 

On a natural beach, the mechanism proposed here may only be one phase of an 
evolving process. Seasonal variation of the wave climate or the arrival of a storm can 
heighten the importance of nonlinearity ; the simple linearized description may no 
longer suffice. If waves break over the bars, the bar crests can be eroded, and the 
tendency of bar formation can be altered. These features deserve further studies. 

The present research is supported by the Office of Naval Research (contract 
N00014-83K-0550) and the National Science Foundation (grant MEE 821-0649). 
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